\(\int \frac {\sqrt {a+i a \tan (c+d x)}}{(e \sec (c+d x))^{3/2}} \, dx\) [397]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 30, antiderivative size = 81 \[ \int \frac {\sqrt {a+i a \tan (c+d x)}}{(e \sec (c+d x))^{3/2}} \, dx=\frac {4 i a \sqrt {e \sec (c+d x)}}{3 d e^2 \sqrt {a+i a \tan (c+d x)}}-\frac {2 i \sqrt {a+i a \tan (c+d x)}}{3 d (e \sec (c+d x))^{3/2}} \]

[Out]

4/3*I*a*(e*sec(d*x+c))^(1/2)/d/e^2/(a+I*a*tan(d*x+c))^(1/2)-2/3*I*(a+I*a*tan(d*x+c))^(1/2)/d/(e*sec(d*x+c))^(3
/2)

Rubi [A] (verified)

Time = 0.17 (sec) , antiderivative size = 81, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {3578, 3569} \[ \int \frac {\sqrt {a+i a \tan (c+d x)}}{(e \sec (c+d x))^{3/2}} \, dx=\frac {4 i a \sqrt {e \sec (c+d x)}}{3 d e^2 \sqrt {a+i a \tan (c+d x)}}-\frac {2 i \sqrt {a+i a \tan (c+d x)}}{3 d (e \sec (c+d x))^{3/2}} \]

[In]

Int[Sqrt[a + I*a*Tan[c + d*x]]/(e*Sec[c + d*x])^(3/2),x]

[Out]

(((4*I)/3)*a*Sqrt[e*Sec[c + d*x]])/(d*e^2*Sqrt[a + I*a*Tan[c + d*x]]) - (((2*I)/3)*Sqrt[a + I*a*Tan[c + d*x]])
/(d*(e*Sec[c + d*x])^(3/2))

Rule 3569

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(d*
Sec[e + f*x])^m*((a + b*Tan[e + f*x])^n/(a*f*m)), x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 + b^2, 0] &
& EqQ[Simplify[m + n], 0]

Rule 3578

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(d*S
ec[e + f*x])^m*((a + b*Tan[e + f*x])^n/(a*f*m)), x] + Dist[a*((m + n)/(m*d^2)), Int[(d*Sec[e + f*x])^(m + 2)*(
a + b*Tan[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 + b^2, 0] && GtQ[n, 0] && LtQ[m, -
1] && IntegersQ[2*m, 2*n]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 i \sqrt {a+i a \tan (c+d x)}}{3 d (e \sec (c+d x))^{3/2}}+\frac {(2 a) \int \frac {\sqrt {e \sec (c+d x)}}{\sqrt {a+i a \tan (c+d x)}} \, dx}{3 e^2} \\ & = \frac {4 i a \sqrt {e \sec (c+d x)}}{3 d e^2 \sqrt {a+i a \tan (c+d x)}}-\frac {2 i \sqrt {a+i a \tan (c+d x)}}{3 d (e \sec (c+d x))^{3/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.79 (sec) , antiderivative size = 48, normalized size of antiderivative = 0.59 \[ \int \frac {\sqrt {a+i a \tan (c+d x)}}{(e \sec (c+d x))^{3/2}} \, dx=\frac {2 (i+2 \tan (c+d x)) \sqrt {a+i a \tan (c+d x)}}{3 d (e \sec (c+d x))^{3/2}} \]

[In]

Integrate[Sqrt[a + I*a*Tan[c + d*x]]/(e*Sec[c + d*x])^(3/2),x]

[Out]

(2*(I + 2*Tan[c + d*x])*Sqrt[a + I*a*Tan[c + d*x]])/(3*d*(e*Sec[c + d*x])^(3/2))

Maple [A] (verified)

Time = 10.64 (sec) , antiderivative size = 52, normalized size of antiderivative = 0.64

method result size
default \(\frac {2 \left (i \cos \left (d x +c \right )+2 \sin \left (d x +c \right )\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}}{3 d \sqrt {e \sec \left (d x +c \right )}\, e}\) \(52\)
risch \(-\frac {i \sqrt {\frac {a \,{\mathrm e}^{2 i \left (d x +c \right )}}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}\, \left (-2 \cos \left (d x +c \right )+4 i \sin \left (d x +c \right )\right )}{3 e \sqrt {\frac {e \,{\mathrm e}^{i \left (d x +c \right )}}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}\, d}\) \(80\)

[In]

int((a+I*a*tan(d*x+c))^(1/2)/(e*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

2/3/d*(I*cos(d*x+c)+2*sin(d*x+c))*(a*(1+I*tan(d*x+c)))^(1/2)/(e*sec(d*x+c))^(1/2)/e

Fricas [A] (verification not implemented)

none

Time = 0.24 (sec) , antiderivative size = 75, normalized size of antiderivative = 0.93 \[ \int \frac {\sqrt {a+i a \tan (c+d x)}}{(e \sec (c+d x))^{3/2}} \, dx=\frac {\sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (-i \, e^{\left (4 i \, d x + 4 i \, c\right )} + 2 i \, e^{\left (2 i \, d x + 2 i \, c\right )} + 3 i\right )} e^{\left (-\frac {1}{2} i \, d x - \frac {1}{2} i \, c\right )}}{3 \, d e^{2}} \]

[In]

integrate((a+I*a*tan(d*x+c))^(1/2)/(e*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/3*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*(-I*e^(4*I*d*x + 4*I*c) + 2*I*e^(2*I*d
*x + 2*I*c) + 3*I)*e^(-1/2*I*d*x - 1/2*I*c)/(d*e^2)

Sympy [F]

\[ \int \frac {\sqrt {a+i a \tan (c+d x)}}{(e \sec (c+d x))^{3/2}} \, dx=\int \frac {\sqrt {i a \left (\tan {\left (c + d x \right )} - i\right )}}{\left (e \sec {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate((a+I*a*tan(d*x+c))**(1/2)/(e*sec(d*x+c))**(3/2),x)

[Out]

Integral(sqrt(I*a*(tan(c + d*x) - I))/(e*sec(c + d*x))**(3/2), x)

Maxima [A] (verification not implemented)

none

Time = 0.38 (sec) , antiderivative size = 54, normalized size of antiderivative = 0.67 \[ \int \frac {\sqrt {a+i a \tan (c+d x)}}{(e \sec (c+d x))^{3/2}} \, dx=\frac {\sqrt {a} {\left (-i \, \cos \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ) + 3 i \, \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ) + 3 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{3 \, d e^{\frac {3}{2}}} \]

[In]

integrate((a+I*a*tan(d*x+c))^(1/2)/(e*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

1/3*sqrt(a)*(-I*cos(3/2*d*x + 3/2*c) + 3*I*cos(1/2*d*x + 1/2*c) + sin(3/2*d*x + 3/2*c) + 3*sin(1/2*d*x + 1/2*c
))/(d*e^(3/2))

Giac [F]

\[ \int \frac {\sqrt {a+i a \tan (c+d x)}}{(e \sec (c+d x))^{3/2}} \, dx=\int { \frac {\sqrt {i \, a \tan \left (d x + c\right ) + a}}{\left (e \sec \left (d x + c\right )\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((a+I*a*tan(d*x+c))^(1/2)/(e*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate(sqrt(I*a*tan(d*x + c) + a)/(e*sec(d*x + c))^(3/2), x)

Mupad [B] (verification not implemented)

Time = 5.27 (sec) , antiderivative size = 86, normalized size of antiderivative = 1.06 \[ \int \frac {\sqrt {a+i a \tan (c+d x)}}{(e \sec (c+d x))^{3/2}} \, dx=\frac {\sqrt {\frac {e}{\cos \left (c+d\,x\right )}}\,\sqrt {\frac {a\,\left (\cos \left (2\,c+2\,d\,x\right )+1+\sin \left (2\,c+2\,d\,x\right )\,1{}\mathrm {i}\right )}{\cos \left (2\,c+2\,d\,x\right )+1}}\,\left (\cos \left (2\,c+2\,d\,x\right )\,1{}\mathrm {i}+2\,\sin \left (2\,c+2\,d\,x\right )+1{}\mathrm {i}\right )}{3\,d\,e^2} \]

[In]

int((a + a*tan(c + d*x)*1i)^(1/2)/(e/cos(c + d*x))^(3/2),x)

[Out]

((e/cos(c + d*x))^(1/2)*((a*(cos(2*c + 2*d*x) + sin(2*c + 2*d*x)*1i + 1))/(cos(2*c + 2*d*x) + 1))^(1/2)*(cos(2
*c + 2*d*x)*1i + 2*sin(2*c + 2*d*x) + 1i))/(3*d*e^2)